The approximate fixed point property in product spaces
نویسندگان
چکیده
In this paper we generalize to unbounded convex subsets C of hyperbolic spaces results obtained by W.A. Kirk and R. Esṕınola on approximate fixed points of nonexpansive mappings in product spaces (C×M)∞, where M is a metric space and C is a nonempty, convex, closed and bounded subset of a normed or a CAT(0)-space. We extend the results further, to families (Cu)u∈M of unbounded convex subsets of a hyperbolic space. The key ingredient in obtaining these generalizations is a uniform quantitative version of a theorem due to Borwein, Reich and Shafrir, obtained by the authors in a previous paper using techniques from mathematical logic. Inspired by that, we introduce in the last section the notion of uniform approximate fixed point property for sets C and classes of self-mappings of C. The paper ends with an open problem.
منابع مشابه
APPROXIMATE FIXED POINT IN FUZZY NORMED SPACES FOR NONLINEAR MAPS
We de ne approximate xed point in fuzzy norm spaces and prove the existence theorems, we also consider approximate pair constructive map- ping and show its relation with approximate fuzzy xed point.
متن کاملOn approximate dectic mappings in non-Archimedean spaces: A fixed point approach
In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubicand quartic functional equations with constants coecients in the sense of dectic mappings in non-Archimedean normed spaces.
متن کاملCommon Fixed Point Theory in Modified Intuitionistic Probabilistic Metric Spaces with Common Property (E.A.)
In this paper, we define the concepts of modified intuitionistic probabilistic metric spaces, the property (E.A.) and the common property (E.A.) in modified intuitionistic probabilistic metric spaces.Then, by the commonproperty (E.A.), we prove some common fixed point theorems in modified intuitionistic Menger probabilistic metric spaces satisfying an implicit relation.
متن کامل(JCLR) property and fixed point in non-Archimedean fuzzy metric spaces
The aim of the present paper is to introduce the concept of joint common limit range property ((JCLR) property) for single-valued and set-valued maps in non-Archimedean fuzzy metric spaces. We also list some examples to show the difference between (CLR) property and (JCLR) property. Further, we establish common fixed point theorems using implicit relation with integral contractive condition. Se...
متن کاملDiameter Approximate Best Proximity Pair in Fuzzy Normed Spaces
The main purpose of this paper is to study the approximate best proximity pair of cyclic maps and their diameter in fuzzy normed spaces defined by Bag and Samanta. First, approximate best point proximity points on fuzzy normed linear spaces are defined and four general lemmas are given regarding approximate fixed point and approximate best proximity pair of cyclic maps on fuzzy normed spaces. U...
متن کاملA common fixed point theorem for weakly compatible maps satisfying common property (E:A:) and implicit relation in intuitionistic fuzzy metric spaces
In this paper, employing the common property ($E.A$), we prove a common fixed theorem for weakly compatible mappings via an implicit relation in Intuitionistic fuzzy metric space. Our results generalize the results of S. Kumar [S. Kumar, {it Common fixed point theorems in Intuitionistic fuzzy metric spaces using property (E.A)}, J. Indian Math. Soc., 76 (1-4) (2009), 94--103] and C. Alaca et al...
متن کامل